Institute for Energy Transition
dedicated to Marine Renewable Energies
RSS News
France Energies Marines rejoint le programme international WREN

France Energies Marines joins the international WREN programme

Rapport annuel 2019 IEA-OES

Global wave and tidal stream energy production surges tenfold over last decade

New dives in the Mediterranean Sea

New dives in the Mediterranean Sea

Felipe Lucero

Hosting a Chilean MERIC researcher

3e campagne hivernale de mesures

Launch of the 3rd winter measurement campaign


Floating wind turbine design methodologies

Duration: 2.5 years

Project description

The operation of a floating wind turbine depends on its hydrodynamic behaviour on the one hand, and on its aerodynamic behaviour on the other hand. It appears that a strong coupling exists between the two for known concepts. The optimization of structural design and control command laws therefore requires the deployment of new simulation tools or the adaptation of existing tools. These tools need to be validated, in particular by experimental testing phases in tanks or wind tunnels, the final qualification being acquired through feedback from experience at sea. The aim is to develop a set of methodologies and digital and experimental tools that will make it possible to optimise the design of floating wind turbines and thus improve the quality, costs and therefore the competitiveness of products developed by French manufacturers.
It is impossible to study the rotor and float simultaneously in a tank for physical reasons. Also, a double test campaign is planned:

  • Wind tunnel tests to characterize the operation of the rotors on a mobile support, using a hexapod.,
  • Basin tests with a modular float and two types of rotor (vertical or horizontal axis helical),
  • At the same time, simulations will be carried out with the various identified numerical models,
  • Finally, all the numerical and experimental results will be compared to establish guidelines for floating wind turbine studies.


  • Improveing knowledge of the dynamic behaviour of rotors and the influence of design parameters on behaviour.
  • Improving industrial design tools.
  • Optimizing the engineering process.
  • Identifying the design phases.
  • Preparing for certification.


Project manager: France Energies Marines

VALEF2 project partners